AGV 8.4 -- Homogenous Inequality Testing is Automatic

  1. Introduction
    1. A Generalize Example
    2. Explanation

Previous chapter: Translation from Linear Arithmetic to Automata

This is a learning note of a course in CISPA, UdS. Taught by Bernd Finkbeiner

Introduction

In the previous section, we used $x+y=z$ as an example. By extend that into a more general inequality

$$g_1x_1+\dots+g_\ell x_\ell\leq h_1y_1+\dots +h_my_m$$

where $x_1,\dots,x_\ell,y_1,\dots,y_m$ are free variables, and $g_1,\dots,g_\ell,h_1,\dots,h_m$ are positive integer constants. Such inequality can be described by a Büchi automaton.

$\textbf{Lemma 8.1. }\textit{Let }\lbrace x_1,\dots,x_\ell,y_1,\dots,y_m\textit{ be a set of free variables, and let }g_1,\dots,g_\ell,h_1,\dots,h_m\newline\textit{be positive integer constants. There exists a Büchi automaton }\mathcal{A}\textit{ such that}$

$$\mathcal{L(A)}=\lbrace\alpha_\sigma\mid\sigma\models g_1x_1+\dots+g_\ell g_\ell\leq h_1 y_1+\dots+h_m y_m\rbrace$$

It is easy to start with constructing an automaton $\mathcal{A}_{\textsf{valid},\ell+m}$ that checks whether the word $\alpha_\sigma$ is well-formed:

  1. checks that the separation symbol $({$},\dots,{$})$ occurs exactly once, and
  2. the separation symbol does not appear at the beginning of the word.

A Generalize Example

  • $D:\sum_{i}g_ix_i-\sum_{j}h_jy_j\leq0$, where $G=\sum_{i}g_i$, and $H=\sum_{j}h_j$. We define the

  • $D_t$ = integer part, $[D]_t$ = fractional part, and observe that for all $t$:

$$D_1=-\sum_{i}g_ic_{x_{i},1}-(-\sum_{j}h_jc_{y_{j},1})=\sum_{j}h_jc_{y_{j},1}-\sum_{i}g_ic_{x_{i},1},\newline D_{t+1}=2D_t+\sum_{i}g_ic_{x_{i},t+1}-\sum_{j}h_jc_{y_{j},t+1},\newline -H\leq[D]_t\leq G.$$

The trichotomy is also completely analogous.

  • If, for some $t$, we have $D_t>H$, we have that $D>0$, and the formula is violated.
  • If, for some $t$, we have $D_t<−G$, we have that $D<0$, and the formula is satisfied.
  • If, for all $t$, we have $−G\leq D_t\leq H$ we have that $D=0$, and the formula is satisfied.

Our automaton construction keeps track of $D_t$ using the recurrence above. Due to the trichotomy, we only need compute $D_t$ precisely as long as it is at least $−G$ and at most $H$.

Thus, we have 3 types of states in the automaton:

  1. initialization state
  2. Precise value states within $−G,\dots,0,\dots,H$ of $D_t$
  3. trap states ($D_t$ has crossed $−G (−\infty)$ or $H (\infty)$)

$\textbf{Construction 8.1. } \text{Let }x_1,\dots,x_\ell,y_1,\dots,y_m\text{ be free variables, and let }g_1,\dots,g_\ell,\text{ and}\newline h_1,\dots,h_m,\text{ be positive integer constants with }\sum_{i}g_i=G\text{ and }\sum_{j}h_j=H\text{. We construct a}\newline\text{(deterministic) Büchi Automaton}\mathcal{A}=(\Sigma,Q,I,T,\small\text{BÜCHI}\normalsize (F))\text{, such that}$

$$\mathcal{L(A)}=\lbrace\alpha_\sigma\mid\sigma\models g_1x_1+\dots+g_\ell g_\ell\leq h_1 y_1+\dots+h_m y_m\rbrace \hspace{1cm}\text{ as follows,}$$

$\begin{array}{l}\hspace{1cm} \cdot \ \Sigma=\lbrace {$}^{l+m}\cup(\lbrace0,1\rbrace^\ell\times\lbrace0,1\rbrace^m)\rbrace\hspace{1cm}((\ell\text{+m)-fold Cartesian product)}\newline
\hspace{1cm} \cdot \ Q=\lbrace\textsf{init},-\infty,-G,-G+1,\dots,-1,0,1,\dots,H,\infty\rbrace\newline
\hspace{1cm} \cdot \ I=\lbrace\textsf{init}\rbrace\newline
\hspace{1cm} \cdot \ F=\lbrace-\infty,-G,-G+1,\dots,-1,0,1,\dots,H\rbrace\newline
\hspace{1cm} \cdot \ T\text{ is defined as follows:}\newline
\hspace{1.5cm} 1. \ (\textsf{init},(c_{x_1},\dots,c_{y_m}),q’))\in T\text{ if and only if }q’\in\sum_{j}h_jc_{y_j}-\sum_{i}g_ic_{x_i}\newline
\hspace{1.5cm} 2. \ (q,({$}\dots{$}),q)\in T\text{ for all }q\in Q\setminus\lbrace\textsf{init}\rbrace,\newline
\hspace{1.5cm} 3. \ (q_\infty,c,q_\infty)\in T\text{ for all }c\in\Sigma,q_\infty\in\lbrace-\infty,\infty\rbrace,\newline
\hspace{1.5cm} 4. \ \text{For }q\in\lbrace-G,\dots,0,\dots,H\rbrace,(q,(c_{x_1},\dots,c_{y_m}),q’)\in T\text{ if and only if }q’=\textsf{next}\text{, where}\newline
\end{array}$
$$\textsf{next}=\left\lbrace\begin{array}{cll}
2q+\sum_{i}g_ic_{x_{i}}-\sum_{j}h_jc_{y_{j}}&\text{if}&-G\leq2q+\sum_{i}g_ic_{x_{i}}-\sum_{j}h_jc_{y_{j}}\leq H \newline
\infty&\text{if}&2q+\sum_{i}g_ic_{x_{i}}-\sum_{j}h_jc_{y_{j}}> H \newline
-\infty&\text{if}&2q+\sum_{i}g_ic_{x_{i}}-\sum_{j}h_jc_{y_{j}} <-G \end{array}\right.$$

Explanation

All possible transitions are those the criterion we mentioned above (according to the numbering):

  1. $D_1=\sum_{j}h_jc_{y_{j},1}-\sum_{i}g_ic_{x_{i},1}$
  2. The separation symbol does not appear at the beginning of the word.
  3. $D_t$ has crossed $−G (−\infty)$ or $H (\infty)$ move to trap states and cannot leave
  4. According to the trichotomy, we only need compute $D_t$ precisely as long as it is $−G\leq D_t\leq H$.

This completes the proof of Lemma 8.1. We remark that the same construction also works to check the following:

  • Strict Inequality: $g_1x_1+\dots+g_\ell x_\ell < h_1y_1+\dots +h_my_m$ (by setting $F=\lbrace−\infty\rbrace$),
  • Equality: $g_1x_1+\dots+g_\ell x_\ell = h_1y_1+\dots +h_my_m$ (by setting $F=\lbrace−G,\dots,H\rbrace$),
  • Reverse Inequality: $g_1x_1+\dots+g_\ell x_\ell \geq h_1y_1+\dots +h_my_m$ (by setting $F=\lbrace−G,\dots,H,\infty\rbrace$),
  • Reverse Strict Inequality: $g_1x_1+\dots+g_\ell x_\ell > h_1y_1+\dots +h_my_m$ (by setting $\infty\rbrace$).

Next chapter: From Linear Arithmetic to Automata

Further Reading:


Please cite the source for reprints, feel free to verify the sources cited in the article, and point out any errors or lack of clarity of expression. You can comment in the comments section below or email to GreenMeeple@yahoo.com
This Repo