AGV 10.3 -- Closure Properties of Muller automata Under Boolean Operations
Previous chapter: From Büchi automata to Muller automata
This is a learning note of a course in CISPA, UdS. Taught by Bernd Finkbeiner
Introduction
We now show that deterministic Muller automata are closed, like nondeterministic Büchi automata, under the Boolean operations (complementation
, union
, and intersection
).
First we introduce the construction of these automaton with operations, then we will prove they are close by the runs under those constructions.
Automata construction of Complementation
$\textbf{Construction 10.3. } \text{Let }\mathcal{A} = (\Sigma,Q,I,T,\small\text{MULLER} \normalsize (\mathcal{F}))\text{ be a complete and deterministic Muller}\newline\text{automaton, where we assume w.l.o.g that }Q\neq\varnothing.\text{ We construct the deterministic Muller}\newline\text{automaton }\mathcal{A}^C = (\Sigma,Q,I,T,\small\text{MULLER} \normalsize(2^Q\setminus\mathcal{F}))\text{ with }\mathcal{L(A^C)}=\Sigma\setminus\mathcal{L(A)}.$
Automata construction of Intersection
We use the function $pr_n$ for $n\in\mathbb{N}$ to project to the (n+1)th component of a arbitrary length tuple, for example:
- $pr_0(x, y)=x$
- $pr_1(x, y)=y$
- $pr_2(x, y),pr_3(x, y),\dots pr_n(x, y) =\text{Undefined}$
We can also apply the projection to a set and return a set of components: $pr_n(S) = \bigcup_{s∈S}{pr_n(s)}.$
$\textbf{Construction 10.4. } \text{For Muller automata }\mathcal{A_1} = (\Sigma,Q,I,T,\small\text{MULLER} \normalsize (\mathcal{F_1}))\text{ and}\newline\mathcal{A_2} = (\Sigma,Q,I,T,\small\text{MULLER} \normalsize (\mathcal{F_2}))\text{ over the same alphabet }\Sigma.\text{ We construct the Muller Automaton}\newline\mathcal{A}_\cap = (\Sigma,Q_1\times Q_2,I_1\times I_2,T_\cap,\small\text{MULLER} \normalsize(\mathcal{F_\cap}))\text{ with }\mathcal{L(A_\cap)}=\mathcal{L(A_1)}\cap\mathcal{L(A_2)}\text{ and where }\mathcal{A_\cap}\text{ is}\newline\text{deterministic if }\mathcal{A_1}\text{ and }\mathcal{A_2}\text{ are deterministic, as follows:}$
$\begin{array}{l}\hspace{1cm}\cdot \ T_\cap=\lbrace((q_1,q_2),\sigma,(q’_1,q’_2))\mid(q_1,\sigma,q’_1)\in T_1,(q_2,\sigma,q’_2)\in T_2\rbrace\newline\hspace{1cm}\cdot \ \mathcal{F}_\cap = \lbrace P\subseteq Q_1\times Q_2\mid pr_0(P)\in\mathcal{F_1},pr_1(P)\in\mathcal{F_2}\rbrace\end{array}$
Closure Properties of under Boolean Operations
$\textbf{Theorem 10.3. } \textit{The languages recognizable by deterministic Muller automata are closed}\newline\textit{under Boolean operations (complementation, union, intersection).}.$
Proof of Deterministic Muller automata are closed under complementation
For a deterministic Muller automaton $\mathcal{A}$, the automaton $\mathcal{A’}$ of Construction 10.3 recognizes the complement
language, because any set $F\notin F$ has to be in the complement
, i.e., $F\in2^Q\setminus F$.
Proof of Deterministic Muller automata are closed under Intersection
For deterministic Muller automata $\mathcal{A_1}$ and $\mathcal{A_2}$, the automaton $\mathcal{A}_\cap$ of Construction 10.4 recognizes the intersection
. Let $r_1 = q^1_0q^1_1\dots$ and $r_2 = q^2_0q^2_1\dots$ be accepting runs of $\mathcal{A_1}$ and $\mathcal{A_2}$ on some $\alpha$. Then $r=(r^1_0,r^2_0)(r^1_1,r^2_1)\dots$ is an accepting run of $\mathcal{A}_\cap$ on $\alpha$ and vice versa.
Proof of Deterministic Muller automata are closed under Union
It can be proved by De Morgan’s laws if they are closed under complement
and intersection
:
$$\Sigma\setminus(\mathcal{L(A_1)}\cap\mathcal{L(A_2)})=(\Sigma\setminus\mathcal{L(A_1)})\cup(\Sigma\setminus\mathcal{L(A_2)})$$
Regular language and Limit operator
Similar to Büchi automata in section 4.1, we can define an $\omega$-regular language from regular language, which is recognizable by deterministic Muller Automata:
$\textbf{Theorem 10.4. }\textit{An language }L\textit{ is recognizable by a deterministic Muller Automata if and only}\newline\textit{if }L\textit{ is a Boolean combination of langauges }\overrightarrow{W}\textit{ where }W\subseteq\Sigma^*\text{ is regular.}$
Proof
$”\Leftarrow”$
If $W$ is regular, then $\overrightarrow{W}$ is recognizable by a deterministic Büchi automaton. Hence, $\overrightarrow{W}$ is recognizable by a deterministic Muller automaton. Thus, the boolean combination $\mathcal{L}$ is recognizable by a deterministic Muller automaton.
$”\Rightarrow”$
A deterministic Muller automaton $\mathcal{A}$ accepts some word $\alpha$ with a unique run $r$ if for some $F\in\mathcal{F}$ we have that $\text{Inf}(r)=F$. Thus, there is some $F\in\mathcal{F}$ such that for all $q\in F$ we have that $\alpha\in\overrightarrow{W_q}$ and for all $q\notin F$ we have that $\alpha\notin\overrightarrow{W_q}$, where $\overrightarrow{W_q}=\mathcal{L(A_q)}$ for the finite-word automaton $\mathcal{A}_q=(\Sigma,Q,I,T,\lbrace q\rbrace)$. Hence,
$$\alpha\in\underset{F\in\mathcal{F}}{\bigcup}\left(\underset{q\in F}{\bigcap}\overrightarrow{W_q}\cap\underset{q\notin F}{\bigcap}(\Sigma^\omega\setminus\overrightarrow{W_q})\right)$$
Next chapter: Semi-Deterministic Büchi Automata
Further Reading: De Morgan’s laws
AGV 10.3 -- Closure Properties of Muller automata Under Boolean Operations