Crpytography 2 -- Probability Theory

Previous chapter: Historical Ciphers & Cryptanalysis

This is a learning note of a course in CISPA, UdS. Taught by Nico Döttling

This chapter is a basic probability concept recap and clarify the syntax when writing them, useful if your memory start fading. Remember,

$$\textbf{Cryptography is impossible without randomness!}$$

Probability Spaces

Components Definition Remarks
$\Omega$ Sample Space A finite set
$\omega\in\Omega$ Elementary Events / Outcomes
$Pr:\omega\rightarrow\mathbb{R}$ Probability Function $\forall\omega\in\Omega. 0\leq Pr[\omega]\leq1, \underset{\omega\in\Omega}{\sum}Pr[\omega] = 1$
$E\subseteq\Omega$ Event $\Pr[E] = \underset{\omega\in\Omega}{\sum}Pr[\omega], \text{ where } Pr[\varepsilon] = 0$

Examples

  • Fair coin: $\Omega = {0,1}, Pr[0]=Pr[1]=1/2$
  • Biased coin: $\Omega = {0,1}, Pr[1]=p, Pr[0]=1-p$
  • Fair dice: $\Omega = {1,2,3,4,5,6}, Pr[1]=Pr[2]=\dots=Pr[6]=1/6$
  • Uniform Randomness: $\Omega = {1.\dots,N}, Pr[1]=Pr[2]=\dots=Pr[N]=1/N$

Set Operations on events

Operations Definition
$Pr[E_1\cap E_2] := Pr[E_1\wedge E_2] := Pr[E_1 \textbf{ AND } E_2] := Pr[E_1, E_2]$ Intersection, Logical ‘AND’
$Pr[E_1\cup E_2] := Pr[E_1\vee E_2] := Pr[E_1 \textbf{ OR } E_2]$ Intersection, Logical ‘OR’
$Pr[\overline{E}] := Pr[\neg E] := Pr[\textbf{NOT }E] \text{ where }\overline{E}=\Omega\setminus E$ Complement, Logical ‘Negation’
$A\subseteq B$, $A\Rightarrow B$ The event A implies the event B

Properties of Probability Spaces

For all events $A, B\subseteq\Omega$ :

  • $Pr[A\cup B] = Pr[A]+Pr[B]-Pr[A\cap B]$
    • It implies $Pr[A\cup B]\leq Pr[A]+Pr[B]$ (Union Bound)
  • $Pr[\overline{A}] = 1 - Pr[A]$
  • If $A\subseteq B$ then $Pr[A]\leq Pr[B]$

Conditional Probabilities

For two events $A$ and $B$, we define the conditional probability

$$Pr[A\mid B] = \frac{Pr[A\cap B]}{Pr[B]}$$

Independence

Events $A, B\subseteq \Sigma$ are independent if

$$Pr[A\cap B] = Pr[A]\cdot Pr[B]$$

Which also implies

$$Pr[A\mid B] = Pr[A]\text{ and }Pr[B\mid A] = Pr[B]$$

$A$ and $B$ are independent $\neq$ $A$ and $B$ are disjoint! $A$ and $B$ are disjoint if $Pr[A\cap B] = \varnothing$

Baye’s Rule

  • A mathematical rule for inverting conditional probabilities
    • allowing one to find the probability of a cause given its effect.
  • This is especially useful when analyzing larger processes composed of smaller ones

$$\text{For all }\varnothing\neq A,B\subseteq\Sigma\text{, it holds that }Pr[A\mid B] = \frac{Pr[B\mid A]\cdot Pr[A]}{Pr[B]}$$

Proof

$$Pr[A\mid B] = \frac{Pr[A\cap B]}{Pr[B]}\ , \ Pr[B\mid A] = \frac{Pr[B\cap A]}{Pr[A]}$$

$$\because Pr[A\cap B] = Pr[B\cap A]$$

$$\therefore Pr[A\cap B] = Pr[B\mid A]\cdot Pr[A], Pr[A\mid B] = \frac{Pr[B\mid A]\cdot Pr[A]}{Pr[B]}$$

Law of Total Probability

  • Sometimes we want to infer the probability of an event given conditional probabilities of this event
  • This will also be useful to compute/bound probabilities by a case analysis

$$\text{Let }B_1,\dots,B_n\text{ be events that partition the probability space }\Sigma\text{, i.e. }B_1\cup\dots\cup B_n=\Sigma$$

$$\text{ and }B_i\cap B_j=\varnothing\text{ for }i\neq j\text{. Then it holds for every event }A\text{ that }\overset{n}{\underset{i=1}{\sum}}Pr[A\mid B_i]\cdot Pr[B_i]=Pr[A]$$


Next post: Probability Theory

Further Reading: History of cryptography

Crpytography 2 -- Probability Theory

https://greenmeeple.github.io/Cryptography/2/

Author

Alex Li

Posted on

2025-05-14

Updated on

2025-05-16

Licensed under

Comments

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×