AGV 3.4 -- Closure Properties of the Büchi-recognizable languages (Concatenations)
Previous chapter: Closure Properties of the Büchi-recognizable languages (Intersection and Union)
This is a learning note of a course in CISPA, UdS. Taught by Bernd Finkbeiner
In this section, we continue the proof of the closure properties of the Büchi-recognizable languages.
Concatenation of regular Langauge and Büchi-recognizable Language
$\textbf{Construction 3.3. } \text{Let }\mathcal{A}_1=(\Sigma,Q_1,I_1,T_1,F_1)\text{ be an automaton over finite words that}\newline\text{recognizes the languge }L_1\text{, and let }\mathcal{A}_2 = (\Sigma,Q_2,I_2,T_2,\small\text{BÜCHI}\normalsize (F_2))\text{ be a Büchi automaton}\newline\text{over the same alphabet that recognizes }L_2.\text{ We construct a Büchi autotmaton }\newline\mathcal{A’}=(\Sigma,Q’,I’,T’,\small\text{BÜCHI}\normalsize (F_2))\text{ with }\mathcal{L}(\mathcal{A’})=L_1\cdot L_2\text{ as follows:}$
$\begin{array}{lrll}
\hspace{1cm} \cdot &Q’&=&Q_1\cup Q_2 \hspace{0.7cm}(\text{w.l.o.g we assume }Q_1\cap Q_2=\varnothing)\newline
\hspace{1cm} \cdot &I’&=&\biggl\lbrace \begin{array}{ll}I_1 & \ \text{if }I_1\cap F_1=\varnothing\newline
I_1\cup I_2 & \ \text{otherwise}\end{array} \newline
\hspace{1cm} \cdot &T’&=&T_1\cup T_2\cup\lbrace (q,\sigma,q’)\mid(q,\sigma,f)\in T_1,f\in F_1,q’\in I_2\rbrace \newline
\end{array}$
Notation | Explaination |
---|---|
$Q’$ | Same as Union, we include both automata for concatenation |
$I’$ | We normaly start the the automaton from $I_1$ If $I_1$ is non-empty, otherwise we start at $I_2$ |
$T’$ | For any states that can reach the accepting states of $T_1$ with one transition, we create a new transitions that reach the initial states of $T_2$ $(I_2)$ |
The correctness of this construction is proven by the following theorem.
$\textbf{Theorem 3.4. }\newline\textit{If $L_1$ is a regular language and $L_2$ is Büchi-recognizable, then $L_1\cdot L_2$ is Büchi-recognizable.}$
Explained in Human language
If $I_1$ is non-empty, then we can have a run that starts from $I_1$ to $r(n)$, that is one transition before $\mathcal{A_1}$’s accepting states of $f$. Then for next transition we either move to $f$, or we move on to $\mathcal{A_2}$ starting from $r(n+1)$.