Crpytography 2 -- Probability Theory

Previous chapter: Historical Ciphers & Cryptanalysis

This is a learning note of a course in CISPA, UdS. Taught by Nico Döttling

This chapter is a basic probability concept recap and clarify the syntax when writing them, useful if your memory start fading. Remember,

$$\textbf{Cryptography is impossible without randomness!}$$

Probability Spaces

Components Definition Remarks
$\Omega$ Sample Space A finite set
$\omega\in\Omega$ Elementary Events / Outcomes
$Pr:\omega\rightarrow\mathbb{R}$ Probability Function $\forall\omega\in\Omega. 0\leq Pr[\omega]\leq1, \underset{\omega\in\Omega}{\sum}Pr[\omega] = 1$
$E\subseteq\Omega$ Event $\Pr[E] = \underset{\omega\in\Omega}{\sum}Pr[\omega], \text{ where } Pr[\varepsilon] = 0$

Examples

  • Fair coin: $\Omega = {0,1}, Pr[0]=Pr[1]=1/2$
  • Biased coin: $\Omega = {0,1}, Pr[1]=p, Pr[0]=1-p$
  • Fair dice: $\Omega = {1,2,3,4,5,6}, Pr[1]=Pr[2]=\dots=Pr[6]=1/6$
  • Uniform Randomness: $\Omega = {1.\dots,N}, Pr[1]=Pr[2]=\dots=Pr[N]=1/N$

Set Operations on events

Operations Definition
$Pr[E_1\cap E_2] := Pr[E_1\wedge E_2] := Pr[E_1 \textbf{ AND } E_2] := Pr[E_1, E_2]$ Intersection, Logical ‘AND’
$Pr[E_1\cup E_2] := Pr[E_1\vee E_2] := Pr[E_1 \textbf{ OR } E_2]$ Intersection, Logical ‘OR’
$Pr[\overline{E}] := Pr[\neg E] := Pr[\textbf{NOT }E] \text{ where }\overline{E}=\Omega\setminus E$ Complement, Logical ‘Negation’
$A\subseteq B$, $A\Rightarrow B$ The event A implies the event B
Read more

Crpytography 1 -- Historical Ciphers & Cryptanalysis

This is a learning note of a course in CISPA, UdS. Taught by Nico Döttling

Substitution Ciphers (∼?)

  • One of the oldest cipher in the world, used in the bible (Atbash)
  • Reorder the alphabet list to create a substitution list
  • Number of keys: $26!$

Shift Cipher

  • Create the substitution list by shifting the alphabets
    • Each letter in the plaintext is replaced by a letter some fixed number (key) of positions down the alphabet.
  • Number of keys: $26$

Caesar Cipher (∼70 BCE)

  • A speical form of shift cipher
    • shift left by exactly 3 (key = 3)

The Vigenère Cipher (∼1500)

Read more
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×